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A TRAFFIC COUNTING DISTRIBUTION 

by 
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ABSTRACT 

■« 

A traffic counting distribution is derived in which a minimum 
spacing or headway between units of traffic is taken into account. 
A comparison is made between this probability distribution and 
the Type I Counter distribution derived by W.  Feller (3).   Explicit 
expressions are derived for the mean and variance of count as 
well as the probability that the interval of interest is completely 
filled by vehicles. 
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A TRAFFIC COUNTING DISTRIBUTION 

Introduction 

Several authors^1^5^' have suggested the use of traffic counting 

distributions in which a minimum spacing or headway between units of 

traffic is taken into account.    Observers of medium and high-density 

traffic flows along highways,   freeways and air lanes have evidence to 

support such a claim.    In the case of road traffic a minimum spacing 

may be governed by the finite car sizes,   the minimum headways by the 

velocity and spacing characteristics of drivers.    For reasons of safety 

airplanes may have to be separated by a minimum space or time interval. 

While at least one author*   ' has pointed out that the relative merits 

of minimum spacings are evident in the measurement of inter-vehicle 

distances,  this may not be the case in measurements of headways,   i. e. , 

the time between the passing of two vehicles.    Leaving aside,  momen- 

tarily,  the question of the domain of definition of the velocity distribution 

and its fundamental effect on space-time measurements,   the author  of 

this paper feels that the probability distribution of inter-vehicle headways 

which includes a minimum headway may serve as a valuable approximation 

to those cases where small headways are merely improbable. 

A number of probability distributions of inter-vehicle  spacings or 

headways have been proposed;   in many cases the corresponding counting 

distributions have been found.    When the inter-vehicle spacing Is expo- 

nentially distributed,   the discrete counting distribution is the well known 

Poisson case.     When the probability density distribution of inter-vehicle 

spacings is Erlang,   Gamma or Type III,   the corresponding counting 
(8) distribution is that of the Generalized Poissonv    (one starts to count with 

the passing of a vehicle) or the state probabilities discussed in a p?.per 

by Jewell        (one  starts to count at a random instant of time).    In this 

paper the author obtains solutions for the discrete probability distribu- 

tions and the average and variance of vehicle counts in an interval when 

ehe inter-vehicle  spacings have the probability density distribution of 

Equation (1). 



*•      The State Probabilities 

Let the probability distribution of the spacing between units of 

traffic be given by 

a(x)    =0 0 1 * < x 

-ji(x- x.) 
hie x0 1 x 

(la) 

(lb) 

ie. .   the probability than an event occurs in dx is   (idx provided x  is 

greater than a minimum spacing  XQ.    By standard arguments(4)  which 

neglect terms proportional to square or higher powers of  dx we find 

that the Chapman-Kolmogorov equations for the state probability p  (x) 

of a count of n  events in an interval x is given by* 

dp. 
=    1 

■m 

0 <        X <        XQ 

xo 1 x 

(2a) 

(2b) 

dPn 
0 

KP, n-1 

^Pn-1-W>r 

0  <  x  <  nx„ 

nx0 £ x 5 (n+ l)x 0 

(n+ l)x0   <  x 

(3a) 

;3b) 

(3c) 

In solving these equations of the birth process one can obtain the 

constants of integration by making use of the condition that the sum of 

the state probabilities add to one.    For a. given interval  x  and minimum 

spacing,   XQ,    the  sum extends over a finite number (say,   n = N)   which 

Pn(x)   corresponds to  A^x)   in Reference 6;   i.e. ,   the counting origin 

starts with the passing of a vehicle. 



represents the fact that a maximum number of events can occur in the 

interval  x.     N  is just the integral part of xx0"     which we denote by square 

brackets, 

-1 

Hence, 

N = 

N 

n^O 
Pn=1 

(4a) 

(4b) 

Although the algebra becomes involved for  n >   1,   the solutions of Equations 

^2), (3) are obtained in a straight-forward manner.    The solution of p0(x)   is 

1   in the interval (O.x») and e"^31'"0'   for   x  >  XQ.      This exponential term is 

just the probability that the spacing between units of traffic is greater than x. 

i.e.,  the tail of the distribution of  a(x)   in Equation (1). 

The probability of one event in (O.x»)   is zero since units of traffic must 

be separated by at least x-.      The probability of one unit in x(x0<  x <   ZxQ) 

is just   1  -  e"^x"xo' since there can only be zero or one unit in an interval 

less than   2x0   in length.     The probability of one unit   in x(2x0   <  x) is the 

solution of (3b)   when one   substitutes  1 for   n  and e~,J^x"Xo'  for  p0(x).    In 

summary -ve find that 

P^y) 

,.(y) =  i . e"^y-xo> 

0   <   y   <   xf 

x0 < y < 2x0 
(5b) 

=    „(y-  2x0)e-^-2xo) + e-^-2Xo) 

■^(y - x0) 2xo <y (5c) 

In general we find that the probability distribution is composed of three 

parts1: 
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Pn(y)    =0 0   <  y  <  nx0 (6a) 

Y   n;fx(y - nx0) | / (n - 1)!      nx0  <.y<(n+l)x0 (6b) 

=   V n; (i(y-nx0) |/(n- 1)!       (n+l)x0< 

-y n+ l;Hi(y-(n+l )x0)'| / n! (6c) 

(2) where  \(n; x)  is the incomplete Gamma function of order   n and argument x 

The discrete distribution  p  (y)   is continuous over the region  0   <  y  <   oo and 

is plotted in Figure  1 for several values of  N = [ yxo"   ]   an<i average count 

n(y). 
(3) 

W. Feller has   pointed out that the probability distribution   p  (y)   can 

be expressed as the difference between two expressions   F      .(y)   and   F  (y) 

which are,   respectively,   the probability that the interval between the   n 

st and (n+1)       event is less than or equal to y.     Since we are considering 

counting intervals which begin with the passing of a traffic unit.   Feller's 

expression for the probability that the   time to the next event is less than or 

equal to  x  becomes 

F0{x) =   0 

1 - e-^*-^ 

0   <  x   <  x. 

X  >   x. 

(7a) 

(7b) 

and the probability that the time between the passing of the n      and Jn + l)8t 

unit is less than or equal to  y   is just 

In this expression and the ones which immediately follow.  Feller uses 

FQ(X)  =  1  - e ^    x  >   0,   i. e. ,   a counting origin randomly placed outside 

the minimum separation interval  x-.. 
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Fn(y) ■ [Fn-i<y-x>dFoW (8a) 

=   y  ^.^y - x)e-^x dx (8b) 

x0 

=  v[n+l; |jL(y-(n+l)x0)]   / n! (8c) 

The difference,   F _ i(y) - F
n(y)   iB JU8t Equation (6b). 

Average and Variance of Traffic Counts 

Standard renewal arguments can be invoked to derive the average 

and variance of the distribution of Equation (6).    They can also be 

derived by inversion of the derivatives of   the double transform 

00 00 

p(8;z) =  ^ | e'8y zn pn<y) dy (9) 
n=0     0 

Fortunately, the expression for  P(s; z)   and moments can be 

obtained in terms of the Laplace transform  a{s)   of the inter-event 

distribution,   a(x),   in Equation (1): 

00 
r -sxo 

ajs)   =    \   e'8xa(x)dx=    i^—— (10) J |J. + 8 
0 

The expression for   P(8;z) is then 

In the notation of incomplete Poisson sums,    -£—Vp- =   y    —^-i—= 1 - E      ,(x), 
j=n 

the expressions of Equations (6) and (8c) are of the form 1  - E  (|j.y-(n+l)x  ). n o 
** 

On expanding P(s;z) in powers of  z  we obtain the Laplace transform of p  (y), 
with inverse transform again equal to the solutions of Equation (6). 



\_     f   8 + [JL   - fXC 0 

8      V - SX ^ s +fji - jize       o 
(11) 

and the Laplace transform of the mean count,  n(s)   is just 

1 nCs)    =   a(s) [ s -  sa(s)] 

=   ^e 
sxrtr_2 8X«i -1 [s   + p.s - jise"     0] 

(12a) 

(12b) 

with inverse transform equal to the average count in y 

N 

(j -  I) ! 
\       v[j;K(y - j* )] 

n(y)    =      > 

j = l 

By similar arguments the variance is found to be 

N 

Var (n(y)) =  ^    T|i^r V [ J:>x(y-Jxo)] 

i-1 

(13a) 

(13b) 

Figure   2   is a plot of the variance versus the mean for values of 

N = 5,   10,   20.    The maximum average counts are 4,  9,   19.    This maximum, 

N-l,   is due to our choice  of origins where one unit of traffic passes just 

before time zero.     The distribution,   p   (x),   describes the probability of  n n 

events in addition to the one counted at time zero;   hence,   the maximum 

value of  n(x)   reflects this feature of being one less than the integral part 

,        -1 of XX o 

Several interesting properties of the variance to mean ratio can be 

observed,     ^n t^e first place we note that for low average counts in an 

interval x  the limiting variance to mean ratio is unity,   i.e. ,   that of the 

Poisson distribution.    When average spacings between cars are much larger 

-6- 



< 
ÜJ 

üJ 

I- 

(O 

CO 
tr 
ÜJ 
> 
üJ 
o 

< 
> 
UJ 
X 

I 
CM 

^ 
^ 

o 
^ 

fXjU JDA 'dDUDIJDA 
<- 0) 



than the minimum spacing  x    the low-density Poisson counts are 

obtained.    As the mean count increases the variance also increases, 

reaches a maximum and then decreases to zero.    Var   n(x)   is always 

less than  n(x)  and the probability distribution   Pn(x)   has a "maximum- 

packing"   property in the sense that the variance of traffic counts is 

zero when the mean count in   x   equals the maximum count N = [ xxo     ] . 

As we have already seen in Equation (6)   p  (x) = 0   for   n > N   and in the 

limit of large   n(x),   PN(x) =  1. 

3.      The Probability of "Maximum-Pack" 

It is clear from the physical arguments and from Equation (6) that 

there is a non-zero probability  p   (y)   of counting the maximum number, 

N,    of vehicles which can be packed into an interval  y(Nxo<   y  <(N-l-l)xo). 

The orobabilitv   p  (Nx   ) is identically zero since counting begins with r '      n        o 

the passing of a vehicle.    However,   if we look at an interval of length 

Nx     with randomly chosen origin,   the probability  qN(Nxo)     of counting 

the maximum number in  Nx     is the convolution of the probability that 

the first one appears at   s  and the probability  p^^Nx^s)   that   (N-1) 

vehicles appear in the remainder  of the interval, 

Nx„ o oc 
qN(Nxo)=(xo+ jx'V1   §        pN_1{Nxo- s) J a;'x)dx ds (14a) 

0 8 

,.xo    v[N-l;  n(x - s)] 
qN(Nxo)=(xo+jrV    j  (N .  1) |    d8 n4b) 

~ ■fx}   corresponds to  U   (x)   in Reference    6 ;   i.e. ,   a randomly chosen r n 
counting origin. 
qn 
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00 

-d+nx/1 y  n  (14c) 

j=N-l   l-j+1 

In two limiting cases we note that 

Li"1      WNxo^ :::    1 
[i, -*• oo 

(15a) 

and 

«W 
LLX n   o 

I   +   JJLX 
(15b) 

The first of these two equations restates the rather obvious physical fact 

that in the case of regularly spaced traffic the probability of maximum pack 

equals unity.    The second expression can also be derived by noting that the 

probability of finding one vehicle in x    is equal to the fraction of the average 

inter-vehicle spacing occupied by an interval of length  xo or   xo(xo + (i    )      = 

=   jix  (1  + M-X   )"     •    Figure    3   is a plot of the probability of maximum pack, 

q^JNx  ),  as a function of  ixx   ,   the ratio of the minimum headway to the 
^N       o o 
average,   l/(x,   of the exponential portion of the inter-event distribution of 

Equation (1). 
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SUMMARY 

Figure 4 is a plot of two experimental curves of the cumulative,   Ao(t), 

of the probability distribution,   a(t),   of Equation (1). 

Figure 4(a) is a plot of the fraction of cars east-bound on Upper Market 

Street having headways greater than t   seconds.    These experimental data 

were obtained from the living room of 251 Upper Terrace,   San Francisco 17, 

in September   I960. 

Figure 4(b) is a plot of the cumulative of the distribution of inter-plane 

arrival times over Runway  13L of the Midway,   Chicago Airport.    VFR con- 

ditions were observed on the 6th of February 1959 when these data were 

taken. 

With the kind permission of P. K.   Kinzbruner I am reprinting one of his 

experimental curves measuring the fraction of cars having inter-vehicle 

headways greater than a given size.    These data were obtained in March and 

April of I960 in Boston,   Massachusetts.    Further details of the experiments 

are available in his thesis. 

Tbc- fact that the expressions for the counting distributions also support 

other experiments not reported here suggests that the effect of minimum inter- 

vehicle spacings and headways may be important in medium and high-density 

traffic flows. 
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